JEE-Main-29-07-2022-Shift-2 (Memory Based)

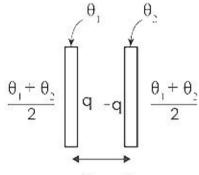
Physics

Question: Two plate have charge q_1 , q_2 ($q_1 > q_2$) they are used to make capacitor. Find potential difference?

Options:

(a)
$$q_1 + q_2 / C$$

(b)
$$(q_1 - q_2)/2C$$


(c)
$$q_1 - q_2 / C$$

(d)
$$q_1 + q_2 / 2C$$

Answer: (b)

Solution:

$$q = \frac{\theta_1 - \theta_2}{2}$$

$$v = \frac{q}{c} = \frac{\theta_1 - \theta_2}{2c}$$

Question: Linear momentum is increased by 20% then increase in kinetic energy? **Options:**

- (a) 40%
- (b) 44%
- (c) 50%
- (d) 60%

Answer: (b)

$$\frac{\Delta k}{k_i} = \frac{k_f - k_i}{k_i}$$

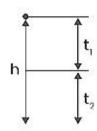
$$=\frac{\frac{P_f^2}{2m}}{\frac{P_i^2}{2n}}=1$$

$$= \left(\frac{P_f}{P_i}\right)^2 - 1(1.2)^2 - 1 = 1.44$$

Question: What is ratio of time t₁ and t₂ if t₁ is time travelled from highest point to half of distance and t₂ the remaining half distance.

Options:

(a)
$$t_1 = \sqrt{2}t_2$$


(b)
$$t_1 = (\sqrt{2} - 1)t_2$$

(c)
$$t_1 = (\sqrt{2} + 1)t_2$$

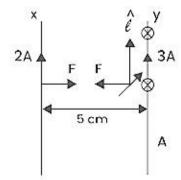
(d)
$$t_2 = (\sqrt{2} - 1)t_1$$

Answer: (d)

Solution:

$$\frac{h}{2} = \frac{1}{2}gt_1^2 \dots (1)$$

$$h = \frac{1}{2} g(t_1 + t_2)^2 ...(2)$$


$$2 = \frac{1}{\frac{1}{2}} = \left(\frac{t_1 + t_2}{t_1}\right)^2 \implies 1 + \frac{t_2}{t_1} = \sqrt{2} \implies \frac{t_2}{t_1} = \left(\sqrt{2} - 1\right)$$

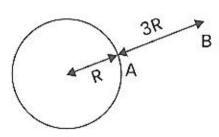
Question: A current carrying wire x of 50 cm carring current 2A is parallel to another wire y of length 5m and 3A current, has separation of 2m find force on wire y due to x.

Options:

- (a) $1.4 \times 10^{-5} \text{ N towards x}$
- (b) 1.3 x 10⁻⁵ N towards y
- (c) $1.4 \times 10^{-5} \text{ N towards y}$
- (d) $1.2 \times 10^{-5} \text{ N towards } x$

Answer: (d)

$$F = \left(\frac{\mu_0 i_1 i_2}{2\pi d}\right) l$$


Question: Gravitation ka tha ki 1g ki body ko 3R from surface leke gye toh gain in potential energy?

Options:

- (a) 48 mJ
- (b) 24 mJ
- (c) 30 mJ
- (d) 26 mJ

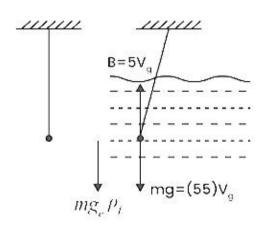
Answer: (a)

Solution:

$$\Delta U = U_B - U_A$$

$$-\frac{GMm}{4R} + \frac{GMm}{R}$$

$$\frac{GMm}{R}\frac{3}{4} = \left(\frac{Gm}{R^2}\right)mR \times \frac{3}{4}$$


$$=10\times1\times6400\times10\times\frac{3}{4}$$

Question: Time period of pendulum 10s. Its relative density is 5 it is immense in water. If new time period is $5\sqrt{x}$ s. Find x.

Options:

- (a) 5
- (b) 3
- (c) 2
- (d) 4

Answer: (a)

$$T' = 2\pi \sqrt{\frac{l}{g_{eff}}}$$

$$= 2\pi \sqrt{\frac{l}{g}}$$

$$= 10 \times \frac{\sqrt{5}}{2}$$

$$= 5$$

$$10s = T = 2\pi \sqrt{\frac{l}{g}}$$

$$mg_{eff} = m\rho - B$$

$$= 4\rho v_g$$

$$g_{eff} = \frac{4}{5}g$$

Question: If α particle and proton are accelerated from same potential difference then the ratio of their linear momenta.

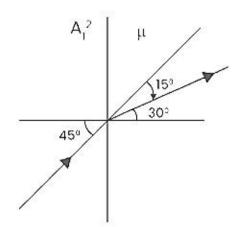
Options:

- (a) $2\sqrt{2}:1$
- (b) $2\sqrt{2}:3$
- (c) $\sqrt{2}:1$
- (d) $\sqrt{2}:2$

Answer: (a)

Solution:

$$P = \sqrt{2mK} = \sqrt{2\pi(qv)}$$


$$\frac{P_{\alpha}}{P_f} = \sqrt{\frac{4m}{m} \times \frac{2e}{e}} = 2\sqrt{2} : 1$$

Question: Light ray from air enters a medium with 45° angle and it deviates 15° from its original path. Find the refractive index of the medium.

Options:

- (a) 2.314
- (b) 1.414
- (c) 1.314
- (d) 1.333

Answer: (b)

$$\sin \pi = \mu \sin 30^{\circ}$$

$$\mu = \sqrt{2}$$

Question: Wire length of 1 m divided in x and y wire x stretched to twice, then stretched wire is twice the resistance of y.

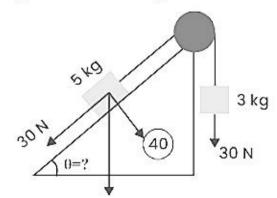
Options:

- (a) 2: 1
- (b) 1:2
- (c) 4:1
- (d) 1:4

Answer: (b)

Solution:

Then
$$\frac{\text{Length of } x}{\text{Length of } y}$$

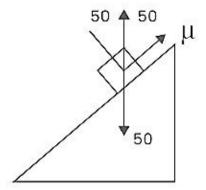

$$1 = x + y...(1)$$

$$4x = 2y$$

$$4\left(\frac{\rho x}{A}\right) = 2\left(\frac{\rho y}{A}\right)$$

$$\frac{x}{y} = \frac{1}{2}$$

Question: At equilibrium Reaction force by inclined place.



Options:

- (a) 30
- (b) 40
- (c) 50
- (d) 10

Answer: (b)

Solution:

Question: Match the following

A – Torque, 1 – Nms⁻¹

 $B - Stress, 2 - Jkg^{-1}$

C – Latent, 3 – Nm

D- Power, $4 - Nm^{-2}$

Options:

(a)
$$A \rightarrow 1$$
, $B \rightarrow 4$, $C \rightarrow 3$, $D \rightarrow 2$

(b)
$$A\rightarrow 3$$
, $B\rightarrow 4$, $C\rightarrow 2$, $D\rightarrow 1$

(c)
$$A \rightarrow 1$$
, $B \rightarrow 3$, $C \rightarrow 2$, $D \rightarrow 4$

(d)
$$A\rightarrow 2$$
, $B\rightarrow 1$, $C\rightarrow 4$, $D\rightarrow 3$

Answer: (b)

Solution:

$$A\rightarrow 3$$
, $B\rightarrow 4$, $C\rightarrow 2$, $D\rightarrow 1$

Question: Assertion: Constantan and magainin are used in resistance coil.

Reason: their temperature coefficient of resistance is low

Options:

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true, but the reason is not the correct explanation of the assertion.
- (c) If assertion is true, but reason is false.
- (d) If both the assertion and reason are false.

Answer: (a)

$$\alpha \simeq 0$$

$$R = R_0 \left(1 + \alpha \Delta T \right)$$

JEE-Main-29-07-2022-Shift-2 (Memory Based)

Chemistry

Question: Which of the following is not a natural polymer?

Options:

(a) Protein

(b) Rayon

(c) Starch

(d) Rubber

Answer: (b)

Solution: Rayon is a synthetic polymer.

Question: Hinsberg's reagent is-

Options:

(a)

(b)

(c)

(d)

Answer: (b)

Solution: Hinsberg's reagent is benzenesulphonyl chloride

Question: In portland cement what enhances the settling time?

Options:

- (a) CaSO₄, ½H₂O
- (b) CaSO₄, 2H₂O
- (c) CaCO₃
- (d) CaSO₄

Answer: (b)

Solution: Gypsum (CaSO₄, 2H₂O) is usually added to prevent early hardening and increase the settling time

Question: Ethanol on reaction with conc. H₂SO₄ gives A, which on further reaction with Baeyer's reagent will give:

Options:

- (a) Ethane-1,2-diol
- (b) Formaldehyde
- (c) Formic acid
- (d) Ethanoic acid

Answer: (a)

Solution:

Question: The sum of oxidation state (magnitude only) and coordination number of cobalt in Na[Co(bpy)Cl4]

Options:

- (a) 3
- (b) 6
- (c) 9
- (d) 5

Answer: (c)

Solution: Oxidation number = x - 4 + 1 = 0

$$x = 3$$

Coordination number = 6

$$Sum = 3 + 6 = 9$$

Question: Which of the following compound has O-O linkage

Options:

- (a) H₂SO₄
- (b) H₂S₂O₈
- (c) H₂S₂O₇
- (d) H₂SO₃

Answer: (b)

Solution:

Question: 200 ml of 0.01 M of HCl and 400 ml of 0.01 M of H₂SO₄ are mixed. What is the final pH?

Options:

- (a) 2
- (b) 1
- (c) 3
- (d) 4

Answer: (a)

Solution:

$$H^{+} = \frac{2mmol + 8mmol}{600} = \frac{1}{60}$$

$$pH = -log[H^+]$$

$$=-\log\frac{1}{60}$$

$$pH = 1.77 \approx 2$$

Question: Which of the following ions has lowest value of hydration enthalpy in magnitude? **Options:**

- (a) Cr^{2+}
- (b) Mn²
- (c) Fe^{2+}
- (d) Co²⁺

Answer: (b)

Solution: Hydration enthalpy order $Co^{2+} > Fe^{2+} > Cr^{2+} > Mn^{2+}$

Therefore, Mn²⁺ has largest hydration enthalpy

Question: HNO $_3$ + KCl \rightarrow KNO $_3$ + Cl $_2$ + NOCl + H $_2$ O. Find amount of HNO $_3$ required to make 110 g KNO $_3$

Options:

- (a) 91.5g
- (b) 56.4g
- (c) 14.7g
- (d) 67.2g

Answer: (a)

Solution: $4HNO_3 + 3KCl \rightarrow 3KNO_3 + Cl_2 + NOCl + 2H_2O$

 3×101 g of KNO₃ – 4×63 g of HNO₃

110 g of KNO₃ -
$$\frac{4 \times 63 \times 110}{3 \times 101}$$
 = 91.5 g

Question: Number of chlorine atoms in Bithionol is

Answer: 4.00

Solution:

Question: How many among the following are sp³d² hybridised?

BrF5, [ICl4], ICl3, ICl5, SF6, PCl5

Answer: 4.00

Solution:

BrF₅ =
$$\frac{1}{2}$$
 (7 + 5) = 6 = sp²d²

$$[ICl_4]^- = \frac{1}{2}(7+4+1) = 6 = sp^3d^2$$

$$ICl_5 = \frac{1}{2}(7+5) = 6 = sp^3d^2$$

$$SF_6 = \frac{1}{2}(6+6) = 6 = sp^3d^2$$

Question: Weight of O_2 is x gram and for Ne is 200 g. Total pressure is 25 bar and Partial pressure of Ne 20 bar Find x =?

Answer: 80.00

$$P_{Nc} = x_{Nc} P_{total}$$

$$x_{\text{Ne}} = \frac{20}{25} = \frac{4}{5}$$

$$x_{\text{Nc}} = \frac{\frac{200}{20}}{\frac{200}{20} + \frac{x}{32}} = \frac{4}{5}$$

$$\frac{10}{10 + \frac{x}{32}} = \frac{4}{5}$$

$$50 = 40 + \frac{x}{8}$$

$$x = 80 g$$

JEE-Main-29-07-2022-Shift-2 (Memory Based)

MATHEMATICS

Question: The value of $\sum_{r=1}^{20} (r^2 + 1) \cdot r!$ is:

Options:

(a)
$$22! - 2 \cdot (20)!$$

(b)
$$(22)!-2(21)!$$

(c)
$$(22)!$$

(d)
$$2(21)!$$

Answer: (b)

Solution:

$$\sum_{r=1}^{20} (r^2 + 1)r! = \sum_{r=1}^{20} ((r+1)(r+2) - 3(r+1) + 2)r!$$

$$= \sum_{r=1}^{20} ((r+2)! - 3(r+1)! + 2r!)$$

$$= \sum_{r=1}^{20} ((r+2)! - (r+1)!) - 2\sum_{r=1}^{20} ((r+1)! - r!)$$

$$= (22! - 2!) - 2(21! - 1!)$$

$$= 22! - 2 \times 2! - 2 + 2$$

$$= (22)! - 2(21)!$$

Question: If $|\vec{a}| |\vec{b}| |\vec{c}| = 14$ and $(\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = 168$ and $\vec{a}, \vec{b}, \vec{c}$ are coplanar, concurrent and make equal angles with each other, then $|\vec{a}| + |\vec{b}| + |\vec{c}|$ is equal to:

Options:

- (a) 14
- (b) 16
- (c) 10
- (d) 12

Answer: (b)

Solution:

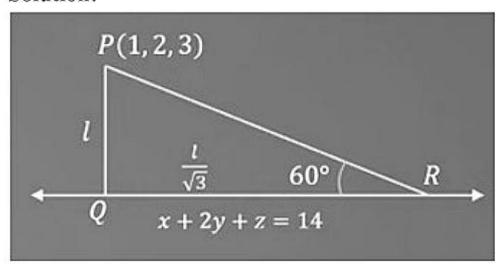
 $\because \vec{a}, \vec{b}, \vec{c}$ are coplanar and make equal angle with each other (say θ)

So, $\theta = 60^{\circ}$

$$(\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) = |\vec{a} \times \vec{b}| |\vec{b} \times \vec{c}|$$
 (a $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{c}$ will be parallel)

$$= |\vec{a}| |\vec{b}|^2 |\vec{c}| \sin^2 \theta = 14 \sin^2 \theta |\vec{b}|$$
So, $14 \times \frac{3}{4} (|\vec{a}| + |\vec{b}| + |\vec{c}|) = 168$

$$\Rightarrow |\vec{a}| + |\vec{b}| + |\vec{c}| = 16$$


Question: A perpendicular drawn from (1, 2, 3) to the plane x + 2y + z = 14 and intersect plane at Q. R be a point on plane such that PR makes an angle 60° with the plane, then area of ΔPQR is:

Options:

- (a) $\sqrt{3}$ sq. units
- (b) 3 sq. units
- (c) $\frac{\sqrt{3}}{2}$ sq. units
- (d) 4 sq. units

Answer: (a)

Solution:

$$\therefore QR = PQ \cdot \cot 60^{\circ} = \frac{l}{\sqrt{3}}$$

Also,
$$l = \left| \frac{1+4+3-14}{\sqrt{1+4+1}} \right| = \sqrt{6}$$

Area of
$$\triangle PQR = \frac{1}{2}l \cdot \frac{l}{\sqrt{3}} = \frac{6}{2\sqrt{3}} = \sqrt{3}$$

Question: The number of solution of the equation $2\cos\left(\frac{x^2+x}{6}\right) = 4^x + 4^{-x}$ is/are:

Options:

- (a) 1
- (b) 0
- (c)3
- (d) Infinite

Answer: (a)

Solution:

$$2\cos\left(\frac{x^2+x}{6}\right) = 4^x + 4^{-x}$$

Equality holds when $4^x + 4^{-x} = 2$ and $\cos\left(\frac{x^2 + x}{6}\right) = 1$

$$4^x + 4^{-x} = 2$$
 gives $x = 0$ for which $\cos\left(\frac{x^2 + x}{6}\right) = 1$

So, there exist only one solution x = 0.

Question: Let \vec{a}, \vec{b} are two vectors and $\vec{a} \cdot \vec{b} = 3$, $|\vec{a} \times \vec{b}|^2 = 75$, and $|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + 2|\vec{b}|^2$, then $|\vec{a}|^2$ is equal to _____.

Answer: 14.00

Solution:

$$\left| \vec{a} + \vec{b} \right|^2 = \left| \vec{a} \right|^2 + 2\vec{a} \cdot \vec{b} + \left| \vec{b} \right|^2 = \left| \vec{a} \right|^2 + 2\left| \vec{b} \right|^2$$
$$\Rightarrow \left| \vec{b} \right|^2 = 2\left(\vec{a} \cdot \vec{b} \right) = 6$$

Also,

$$\Rightarrow \left| \vec{a} + \vec{b} \right|^2 + \left| \vec{a} \cdot \vec{b} \right|^2 = \left| \vec{a} \right|^2 \left| \vec{b} \right|^2$$

$$\Rightarrow$$
 75 + 9 = 6 $|\vec{a}|^2$

$$\Rightarrow \left| \vec{a} \right|^2 = \frac{84}{6} = 14$$

Question: If sum and product of mean and variance in a binomial distribution are 82.5 and 1350 respectively, then n is equal to ____.

(where n is number of trial in binomial distribution).

Answer: 96.00

Solution:

: Mean and variance are the roots of

$$x^2 - 82.5x + 1350 = 0$$

So, mean
$$= np = 60$$

and variance = npq = 22.5

$$\Rightarrow q = \frac{22.5}{60} = \frac{3}{8}$$

So,
$$p = \frac{5}{8}$$
 and $n = \frac{60}{\frac{5}{8}} = 96$

Question: The number of numbers lying between 1024 and 23146 which are divisible by 55 and made from 2, 3, 4, 5, 6 without repetition, is ____.

Answer: 6.00

Solution:

We will solve this in two cases:

Case I:

When number has 4 digits (say \overline{abcd})

Here d is fixed as 5.

So, a,b,c can be

$$(6,4,3),(3,4,6),(2,3,6),(6,3,2),(3,2,4)$$
 or $(4,2,3)$ only

Number of numbers possible = 6

Case II:

When number has 5 digits.

No such number is possible because even last number formed is greater than 23146.

Total number of such number = 6