JEE-Main-28-06-2022-Shift-2 (Memory Based)

Physics

Question: A body of mass 2 kg moving with speed 4 m/s encounters a region from x=0.5 to x=1.5where F=-kx. Find the final velocity of the body. Given k=12

Options:

- (a) 5 m/s
- (b) 2 m/s
- (c) 4 m/s
- (d) 6 m/s

Answer: (b)

Solution:

$$a = -\frac{kx}{m}$$

$$v\frac{dv}{dx} = -\frac{12x}{m}$$

$$vdv = -\frac{12x}{m}dx$$

$$\left[\frac{v^2}{2}\right]_4^v = -\frac{12}{2} \left(\frac{x^2}{2}\right)_{0.5}^{1.5}$$

$$\frac{v^2}{2} - \frac{16}{2} = -6\left(\frac{2.25 - 0.25}{2}\right)$$

$$v^2 - 16 = -12$$

$$v^2 = -12 + 14 = 4$$

$$v = 2m/s$$

Question: A ladder rest slantly with its base 3 m from the floor The wall is frictionless. Length of ladder is $\sqrt{34}$ m Mass of ladder is 10kg. Find the ratio of reaction force by wall to reaction force by floor on ladder

Options:

- (a) 3/10
- (b) 9/10
- (c) 5/10
- (d) 7/10

Answer: (a)

Solution:

$$N_G = mg = 10 \times 10 = 100N$$

Taking moments about bottom point of ladder

$$N_w \times 5 = mg \times \frac{\sqrt{34}}{2} \cos \theta$$

$$N_{w} \times 5 = mg \times \frac{\sqrt{34}}{2} \cos \theta$$

$$N_{w} \times 5 = 100 \times \frac{\sqrt{34}}{2} \times \frac{3}{\sqrt{34}}$$

$$N_{w} \times 5 = 100 \times \frac{34}{2} \times \frac{3}{\sqrt{34}} \times \frac{3}{\sqrt{34}}$$

$$N_w = 30N$$

$$\frac{N_w}{N_G} = \frac{30}{100} = \frac{3}{10}$$

Question: If all the oxygen molecules dissociate into atoms and temperature is doubled then $V_{\rm mis}$ times the original becomes_

Options:

(a) 4

(b) 3

(c) 2

(d) None of these

Answer: (c)

Solution:

$$V_{rms} = \sqrt{\frac{3RT}{M}}$$

$$(V_{rms})_0 = \sqrt{\frac{3R(2T)}{M/2}}$$
$$= 2\sqrt{\frac{3RT}{M}} = 2V_{rms}$$

$$=2\sqrt{\frac{3RT}{M}}=2V_{rms}$$

Question: $I = \frac{a}{5}, R = 1\Omega$, Find a.

Solution:

Starting from right most resistors

$$R \parallel R$$

$$R_A = \frac{R}{2}\Omega$$

$$R + \frac{R}{2} = \frac{3R}{2}\Omega$$

$$\frac{3R}{2} \parallel \frac{3R}{2}$$

$$R_{\rm B} = \frac{3R}{4}\Omega$$

$$R + \frac{3R}{4} = \frac{7R}{4}\Omega$$

$$\frac{7R}{4} || \frac{7R}{4}$$

$$R_C = \frac{7R}{8}\Omega$$

$$R_{eq} = R + \frac{7R}{8} = \frac{15R}{8}\Omega = \frac{15}{8}\Omega$$

$$I = \frac{V}{R} = \frac{3}{15} \times 8 = \frac{8}{5}A$$

$$\Rightarrow a = 8$$

Question: In YDSE slab of thickness t and RI 1.5 is inserted in front of one of the slits. As a result intensity at the central maxima remains the same. What is the minimum value of thickness required?

Options: (a) 2λ

(d) None of these

Answer: (a)

Shift
$$=\frac{D}{d}(\mu-1)t$$

$$=\frac{D\lambda}{d}$$

$$\Rightarrow t = \frac{\lambda}{\mu - 1} = 2\lambda$$

Question: If resistance of a resistor is 2 Ω at 10°C and it is 3 Ω at 30°C find the temperature coefficient of resistance

(a)
$$0.24 \times 10^{-2} / {}^{\circ}C$$

(b)
$$4.4 \times 10^{-2} / {}^{\circ}C$$

(c)
$$2.5 \times 10^{-2} / {}^{\circ}C$$

(d) None of these

Answer: (c)

Solution:

$$R_{t} = R_{0} \left(1 + \alpha \Delta T \right)$$

$$3 = 2(1 + \alpha(30 - 10))$$

$$3 = 2 + 40\alpha$$

$$1 = 40\alpha$$

$$\alpha = \frac{1}{40} = 2.5 \times 10^{-2} / {^{\circ}C}$$

Question: Particle moves along the straight line such that it moves $1/3^{rd}$ distance with speed v_1 the next $1/3^{rd}$ distance with speed v_2 and remaining $1/3^{rd}$ distance with speed v_3 . Then its average speed throughout motion is

Options:

(a)
$$\frac{v_1 v_2 + v_2 v_3 + v_3 v_1}{v_1 + v_2 + v_3}$$

(b)
$$\frac{v_1 v_2 v_3}{v_1 v_2 + v_2 v_3 + v_3 v_1}$$

(c)
$$\frac{v_1 + v_2 + v_3}{3}$$

(d)
$$\frac{3v_1v_2v_3}{v_1v_2 + v_2v_3 + v_3v_1}$$

Answer: (d)

Solution:

Average speed = total distance covered / total time taken

Let the total distance = 3x

Time taken to cover first one third $(x) = t_1 = \frac{x}{v_1}$

Time taken to cover second one third $(x) = t_2 = \frac{x}{v_2}$

Time taken to cover third one third $(x) = t_3 = \frac{x}{v_3}$

Average speed =
$$\frac{3x}{\frac{x}{v_1} + \frac{x}{v_2} + \frac{x}{v_3}}$$

$$= \frac{3x}{x \left(\frac{v_3 v_2 + v_1 v_3 + v_1 v_2}{v_1 v_2 v_3} \right)}$$

$$= \frac{3v_1v_2v_3}{v_1v_2 + v_2v_3 + v_1v_3}$$

Question: A water drop of radius 1 μm in falls through air. Force of buoyancy and density of air is negligible. If the coefficient of viscosity of air is $2.0\times10^{-5} kgm^{-1}s^{-1}$. Find terminal velocity of water drop.

Options:

(a)
$$3.4 \times 10^{-4} m/J$$

(b)
$$2.4 \times 10^{-4} m/J$$

(c)
$$1.4 \times 10^{-4} m/J$$

(d)
$$1.1 \times 10^{-4} m/J$$

Answer: (d)

Solution:

$$V_{T} = \frac{2}{9} \frac{r^2 \left(\gamma - 6\right) g}{\eta}$$

$$V_T = \frac{2}{9} \frac{r^2 \gamma g}{\eta}$$

$$V_T = \frac{2}{9} \times \frac{\left(1 \times 10^{-6}\right)^2 \times 1 \times 10^3 \times 10}{2.0 \times 10^{-5}}$$

$$V_T = \frac{1}{9} \times 10^{-12+3+1+5} = 1.1 \times 10^{-4} \, m \, / \, J$$

Question: Two capacitors of capacities $5\mu F$ and $10\mu F$ connected and the switch is kept open. Initially potential on $5\mu F$ capacitor is 30V and $10\mu F$ capacitor is uncharged. Find the charge on the $10\mu F$ capacitor once the switch is closed.

Options:

(a) 300
$$\mu C$$

(b) 100
$$\mu C$$

(c) 200
$$\mu C$$

(d) 400
$$\mu C$$

Answer: (b)

Solution:

$$V = \frac{C_1 V_1 + C_2 V_2}{C_1 + C_2}$$

$$V = \frac{5 \times 30}{5 + 10} = 10V$$

$$Q = 10 \times 10 = 100 \mu C$$

Question: Two bodies of equal mass has force of attraction F, then find the the force of attraction when one third of mass of one body is transferred to another

(a)
$$\frac{1}{9}F$$

(b)
$$\frac{8}{9}F$$

(c)
$$\frac{5}{9}F$$

(**d**)
$$\frac{7}{9}F$$

Solution:

$$F_{i} = \frac{Gm^{2}}{r^{2}}$$

$$F_{f} = \frac{G\left(m - \frac{1}{3}m\right)\left(m + \frac{1}{3}m\right)}{r^{2}}$$

$$= G\frac{\frac{8}{9}m^{2}}{r^{2}} = \frac{8}{9}F_{i} = \frac{8}{9}F$$

Question: A coil is placed in a time varying magnetic field. If the no. of turns are halved and the radius of wire is doubled. (Assume the coil to be short circuited) Then the power dissipated:

Options:

- (a) $4P_i$
- **(b)** $1P_i$
- (c) $7P_i$
- (d) $3P_i$

Answer: (a)

Solution:

$$N_i = n N_f = \frac{n}{2}$$

$$r_i = r r_f = 2r$$

Total length of wire $= n(2\pi R)$ = where R is radius of loop finally if n becomes half, radius of loop has to double

$$\therefore \text{ New } emf = -\left(\frac{n}{2}\right) \left(\pi (2R)^2\right) \frac{dB}{dt}$$

New Power =
$$\frac{\left[-\frac{n}{2}\pi(4R^2)\frac{dB}{dt}\right]^2}{\rho\frac{l}{\pi(2r)^2}}$$

Old power =
$$\frac{\left[-n\pi(R)^2(dB/dt)\right]^2}{\rho \frac{l}{\pi r^2}} \therefore P_f = 4P_i$$

Question: K_1 and K_2 are KE_{max} of λ_1 and λ_2 Falling a metal If $\lambda_1 = 3\lambda_2$ Find relation of K_1 and K_2

- (a) $3K_1 < K_2$
- **(b)** $4K_1 < K_2$

(c)
$$5K_1 < K_2$$

(d)
$$2K_1 < K_2$$

Solution:

Kinetic energy of the photoelectrons $K = \frac{hc}{\lambda} - \phi$ where ϕ is the work function of the metal

$$\therefore \text{ For wavelength } \lambda_1 \text{ } K_1 = \frac{hc}{\lambda_1} - \phi ... (1)$$

For wavelength
$$\lambda_2$$
, $K_2 = \frac{hc}{\lambda_2} - \phi...(2)$

Given: $\lambda_1 = 3\lambda_2$

$$\therefore \text{ Equation (1) becomes } K_1 = \frac{hc}{3\lambda_2} - \phi...(3)$$

From (2) - (3), we get
$$K_2 - K_1 = \frac{hc}{\lambda_2} - \frac{hc}{3\lambda_2}$$

$$K_2 - K_1 = \frac{2}{3} \frac{hc}{\lambda_2} \implies \frac{hc}{\lambda_2} = \frac{3}{2} (K_2 - K_1)$$

Put this in (2),
$$K_2 = \frac{3}{2} (K_2 - K_1) - \phi$$

$$\Rightarrow K_2 - 3K_1 = 2\phi$$

As
$$\phi > 0 \Rightarrow K_2 - 3K_1 > 0$$

Thus
$$K_1 < \frac{K_2}{3}$$

Question: EM wave is moving in +x direction. If amplitude of electric field is $E_0 = 60 \text{ N/C}$ which is oscillating in y direction, then find the equations of E and B

Options:

(a)
$$E = 60\sin(kx - \omega t)\hat{i}$$
$$B = 2 \times 10^{-7}\sin(k_x - \omega t)\hat{j}$$

(b)
$$E = 60\sin(kx - \omega t)\hat{k}$$
$$B = 2 \times 10^{-7}\sin(k_x - \omega t)\hat{k}$$

(c)
$$E = 60\sin(kx - \omega t)\hat{j}$$
$$B = 2 \times 10^{-7}\sin(k_x - \omega t)\hat{k}$$

(d)
$$E = 60\sin(kx - \omega t)\hat{k}$$
$$B = 2 \times 10^{-7}\sin(k_x - \omega t)\hat{i}$$

Answer: (c)

Solution:

$$E_0 = 60$$

$$\therefore B_0 = \frac{E_0}{C} = \frac{60}{3 \times 10^8} = 2 \times 10^{-7}$$

Since wave is moving in +x-dir

$$E = 60\sin(kx - \omega t)\hat{j}$$
$$B = 2 \times 10^{-7}\sin(k_x - \omega t)\hat{k}$$

Question: A solenoid is filled with material of susceptibility 2×10⁻⁷ Fractional change in field intensity compared to the case when air was present inside instead of material

Options:

(a) =
$$2 \times 10^{-5}$$
%

(b) =
$$4 \times 10^{-5}$$
%

(c) =
$$3 \times 10^{-5}\%$$

(d) =
$$5 \times 10^{-5}\%$$

Answer: (a)

Solution:

$$X_m = \frac{M}{H}$$

It is already fractional change in the magnetic induction due to the medium.

:. % age change

$$= X_m \times 100$$

$$=2\times10^{-7}\times100$$

$$=2\times10^{-5}\%$$

Question: Half life of radioactive material is 200 days. Find percent of substance remaining in 83 days

Options:

(a) 65%

(b) 55%

(c) 44%

(d) 75%

Answer: (d)

Solution:

$$N = N_0 \left(\frac{1}{2}\right)^{t/T}$$

T = half life

t =time elapsed

$$\therefore N = N_0 \left(\frac{1}{2}\right)^{\frac{83}{200}}$$

$$N = 100 = 100$$

$$N = N_0 \left(\frac{1}{2}\right)^{\frac{83}{200}}$$

$$\frac{N}{N_0} \times 100 = \left(\frac{1}{2}\right)^{\frac{83}{200}} \times 100$$

$$\approx 75\%$$

Question: Water falls at a rate pf 600 kg/s from a height of 60 m as shown. How many bulbs of capacity 100 W each will glow from the energy produced at the bottom of the fall. Assume full conversion of energy of falling water and all bulbs glowing at 100 W each.

Options:

- (a) 25
- (b) 50
- (c) 3600
- (d) 1000

Answer: (c)

Solution:

Potential energy loss per second

- =600(10)(60)J/s
- $=36\times10^4 \text{ J/s} = 36\times10^4 \text{ W}$

Each bulb consumes 100 W,

.. Total no of bulbs which can glow is 3600.

Question: Two opposite charges are placed at a distance d as shown. Electric filed strength at mid point is 6.4×10^4 N/C. Then the value of d is

Options:

- (a) $20\sqrt{10}$
- **(b)** $50\sqrt{10}$
- (c) $30\sqrt{10}$
- (**d**) $60\sqrt{10}$

Answer: (c)

$$E = \frac{2kQ}{(d/2)^2}$$

$$6.4 \times 10^4 = \frac{2 \times 9 \times 10^9 \times 8 \times 10^{-3}}{d^2/4}$$

$$\therefore d^2 = 9000$$

$$d = 30\sqrt{10}$$

Question: In series RLC circuit voltage across capacitance and inductance is twice that of resistance. If R = 50 hm, V = 220 V, f = 50 Hz. If $L = 1/k\pi$ then value of k is (in m H)

Options:

- (a) H^{-2}
- **(b)** 10^{-2}
- (c) 12^{-2}
- (d) 15⁻²

Answer: (b)

$$V_L = 2V_R$$

$$\omega L = 2R$$

$$L = \frac{2R}{\omega} = \frac{2R}{2\pi f} = \frac{2(s)}{2\pi (50)}$$

$$=\frac{1}{10\pi}=\frac{1}{10\pi}\times\frac{10^{-3}}{10^{-3}}$$

$$K = 10^{-2}$$

JEE-Main-28-06-2022-Shift-2 (Memory Based)

Chemistry

Question: Which of the following is the structure of Tagamet?

Options:

(a)

(b)

(c)

(d) None of these

Answer: (b)

Solution:

Question: In which of oxyacids of sulphur both sulphur have different oxidation state.

- (a) $H_2S_4O_6$
- (b) $H_2S_2O_8$
- (c) H₂S₂O₇
- (d) All of these

Solution:

Question: Match the following.

Column-I	Column-II		
(i) Positively charged	(A) Gel		
(ii) Negatively charged	(B) Starch		
(iii) Macromolecular starch	(C) CuS		
(iv) Cheese	(D) Fe ₂ CO ₃ .x H ₂ O		

Options:

(a) (i)
$$\rightarrow$$
 (D); (ii) \rightarrow (C); (iii) \rightarrow (B); (iv) \rightarrow (A)

(b) (i)
$$\rightarrow$$
 (B); (ii) \rightarrow (C); (iii) \rightarrow (A); (iv) \rightarrow (D)

(c) (i)
$$\rightarrow$$
 (C); (ii) \rightarrow (B); (iii) \rightarrow (D); (iv) \rightarrow (A)

$$(d)\ (i) \rightarrow (D);\ (ii) \rightarrow (A);\ (iii) \rightarrow (D);\ (iv) \rightarrow (B)$$

Answer: (a)

Solution:

- (i) Positively charged \Rightarrow Fe₂CO₃ .x H₂O
- (ii) Negatively charged ⇒ CuS
- (iii) Macromolecular starch ⇒ Starch
- (iv) Cheese \Rightarrow Gel

Question: A compound has 8% H, 70%C, 16% N, Molecular Mass is 160. Find the formula of compound.

- (a) $C_{12}H_{16}N_2$
- (b) $C_{12}H_{18}N_2$

- (c) C₁₁H₁₆N
- (d) $C_{12}H_{15}N$

Solution:

Compound contain 8% H, 70% C and 16% N

No. of moles of
$$C = \frac{70}{12} = 5.8 \approx 6$$

No. of moles of
$$H = \frac{8}{1} = 8$$

No. of moles of N =
$$\frac{16}{14}$$
 = 1 : 1 \approx 1

Mole ratio C : H : N = 6 : 8 : 1

Empirical formula = C_6H_8N

Molecular mass = 160

Empirical formula mass = $12 \times 6 + 2 \times 1 + 14 = 94$

n = 2

Formula of compound = $(C_6H_8N)_2 = C_{12}H_{16}N_2$

Question: What is correct about photochemical smog?

Options:

- (a) It is reducing in nature
- (b) It occurs in humid conditions
- (c) It is formed due to the action of sunlight on Hydrocarbons
- (d) All of these

Answer: (c)

Solution: Photochemical smog results from the action of sunlight on hydrocarbons.

Question: Which of the following is basic oxide?

- (a) CaO
- (b) SiO₂

- (c) Al₂O₃
- (d) NO

Solution: CaO - basic oxide

SiO₂ - acidic oxide,

Al₂O₃ - Amphoteric oxide,

NO - neutral oxide

Question: An ideal gas is stored in a vessel of volume 416 ml at temperature 300 K and Pressure 1.5 atm. What is the mass of gas? (Molecular mass of gas 100g/mol)

Options:

- (a) 3.32 g
- (b) 2.53 g
- (c) 3.01 g
- (d) 1.92 g

Answer: (b)

Solution:

$$PV = \frac{w}{M}RT$$

$$\therefore w = \frac{PVM}{RT} = \frac{1.5 \times 0.416 \times 100}{0.0821 \times 300} = 2.53 g$$

Question: 2.5 g of protein taken and made 500 ml of solution. Osmotic pressure of solution is 5.03×10^{-3} at 300 K. Find the no. of glycine unit.

Options:

- (a) 1.9×10^{16} units
- (b) 2.8×10^{15} units
- (c) 1.2×10^{15} units
- (d) 2.2×10^{10} units

Answer: (c)

Osmotic pressure $(\pi) = \left(\frac{n_2}{V}\right) RT$

$$\pi V = \frac{w_2 RT}{M_2}$$

$$M_2 = \frac{W_2RT}{\pi} = \frac{2.5 \times 0.0821 \times 300}{5.03 \times 10^{-8}} = 12.2 \times 10^8 \text{ g}$$

No. of glycine units
$$=\frac{2.5\times6.023\times10^{23}}{12.2\times10^8}=1.2\times10^{15}$$
 units

Question: In SF₄ what is the bond angle?

Options:

- (a) 90°, 120°
- (b) 90° , 117°
- (c) 89°, 120°
- (d) 89°, 117°

Answer: (d)

Solution:

Question: The volume of 0.01 M KMnO₄ solution which can oxidize 20 ml of 0.05 M Mohr salt solution in acidic medium is

Options:

- (a) 10 ml
- (b) 20 ml
- (c) 30 ml
- (d) 40 ml

Answer: (b)

Solution: $M_1V_1Z_1 = M_2V_2Z_2$

$$0.01 \times V_1 \times 5 = 0.05 \times 20 \times 1$$

$$V_1 = 20 \ ml$$

Question: In the buffer solution, having pH = 4 and $Pk_a = 1.3 \times 10^{-5}$, find the ratio of salt/acid is

Options:

- (a) $10^{-0.8}$
- (b) 0.1
- (c) $10^{0.8}$
- (d) $10^{-2.1}$

Answer: (a)

Solution: $pK_a = -log (1.3 \times 10^{-3})$

$$= 5 - \log 1.3$$

$$=4.85$$

$$pH = pKa + log \frac{[salt]}{[acid]}$$

$$4 = 4.8 - \log \frac{[\text{salt}]}{[\text{acid}]}$$

$$-0.8 = \log \frac{[\text{salt}]}{[\text{acid}]}$$

$$\frac{\text{salt}}{\text{acid}} = 10^{-0.8}$$

Question: Nitration of aniline with HNO₃ + H₂SO₄ gives

Options:

- (a) p-nitroaniline
- (b) m-nitroaniline
- (c) o-nitroaniline
- (d) All of these

Answer: (d)

Question: Assertion: Natural form of rubber is cis 1,4 polyisoprene

Reason: There are weak vander waals forces giving its coiled structure

Options:

(a) Both assertion and reason are true, reason is correct explanation of assertion.

(b) Both assertion and reason are true, but reason is not a correct explanation of assertion.

(c) Assertion is true, but reason is false

(d) Assertion is false, but reason is true

Answer: (b)

Solution: Both assertion and reason are true, but reason is not correct explanation of A

Natural rubber may be considered as a linear polymer of isoprene (2-methyl-1, 3-butadiene) and is also called as cis-1, 4-polyisoprene.

The cis-polyisoprene molecule consists of various chains held together by weak van der Waals interactions and has a coiled structure. Thus. It can be stretched like a spring and exhibits elastic properties.

Question: In extraction of copper FeO and FeSiO₃ are respectively

Options:

- (a) slag, gangue
- (b) gangue, slag
- (c) both are slag
- (d) both are gangue

Answer: (b)

Solution: FeO is gangue and SiO₂ is flux to form slag FeSiO₃.

$$\underset{\text{basic impurity}}{\text{FeO}} + \underset{\text{acidic flux}}{\text{SiO}_2} \rightarrow \underset{\text{slag}}{\text{FeSiO}_3}$$

Question: Isobutyraldehyde reacts with K₂CO₃ and formaldehyde to give A. A reacts with HCN to give B. Hydrolysis of B gives a stable carboxylic acid C. What is C?

Options:

(a)

(b)

(c)

(d)

Answer: (d)

Question: The isotopes of Hydrogen differ in the following property

Options:

- (a) Electronic configuration
- (b) No of protons
- (c) Atomic number
- (d) Atomic mass

Answer: (d)

Solution: The three isotopes of hydrogen differ in mass numbers which are 1, 2 and 3 respectively known as protium, deuterium and tritium.

Question: X reacts with Br₂/H₂O to give gluconic acid and reacts with HNO₃ to give saccharic acid. Name X

Options:

- (a) Maltose
- (b) Starch
- (c) Fructose
- (d) Glucose

Answer: (d)

Gluconic acid

$$\begin{array}{c|c} \text{CHO} & & \text{COOH} \\ | & \text{Oxidation} \\ | & \text{CHOH})_4 \end{array} \xrightarrow{\text{COOH}} \begin{array}{c} \text{COOH} \\ | & \text{CHOH})_4 \\ | & \text{COOH} \end{array}$$

Saccharic acid

Question: Comparison of KE for wavelengths λ and 3 λ , keeping work function constant

Options:

(a)
$$K.E_2 = 9 K.E_1$$

(b) K.E₂ =
$$\frac{1}{9}$$
 K.E₁

(c)
$$K.E_2 = 3 K.E_1$$

(d) K.E₂ =
$$\frac{1}{3}$$
 K.E₁

Answer: (b)

Solution:
$$\lambda = \frac{h}{\sqrt{2m \text{ K.E}}}$$

$$\frac{\lambda}{3\lambda} = \frac{\frac{h}{\sqrt{2m \text{ K.E}_1}}}{\frac{h}{\sqrt{2m \text{ K.E}_2}}}$$

$$K.E_2 = \frac{1}{9} K.E_1$$

Question: Product will have how many Br......

Answer: 1.00

Solution:

$$\begin{array}{c|c} & & & & \\ & &$$

Question: How many of the following contain N - N bond N₂O, N₂O₃, N₂O₄, N₂O₅?

Answer: 2.00

Solution: N_2O_4 and N_2O_3 has one N-N bond as shown below

Question: Consider the following complexes $[Fe(CN)_6]^{3-}$, $[Ni(CN)_4]^{2-}$ and $[Fe(CN)_6]^{4-}$. How many complex(es) is/are paramagnetic?

Answer: 1.00

Solution:

 $[Fe(CN)_6]^{3-} \rightarrow Fe^{3+} \rightarrow 3d^5 \rightarrow paramagnetic$

 $[Ni(CN)_4]^{2-} \rightarrow Ni^{2+} \rightarrow 3d^8 \rightarrow diamagnetic$

 $[Fe(CN)_6]^{4-} \rightarrow Fe^{2+} \rightarrow 3d^6 \rightarrow diamagnetic$

JEE-Main-28-06-2022-Shift-2 (Memory Based)

MATHEMATICS

Question: If n arithmetic means are inserted between a and 100 then ratio of first AM and n^{th} AM is 1:7 and a+n=33. Find n.

Options:

- (a) 21
- (b) 22
- (c) 23
- (d) 24

Answer: (c)

Solution:

$$d = \frac{100 - a}{n+1}$$

$$A_{\rm I} = a + \frac{100 - a}{n+1}$$

$$A_n = a + n \left(\frac{100 - a}{n+1} \right)$$

$$\frac{A_1}{A_n} = \frac{an + 100}{a + 100n} = \frac{1}{7}$$

$$\Rightarrow$$
 7an + 700 = a + 100n

$$a + n = 33$$

$$\Rightarrow a = 33 - n$$

$$\Rightarrow$$
 7(33-n)n+700 = 33-n+100n

$$\Rightarrow 231n - 7n^2 + 700 = 33 + 99n$$

$$\Rightarrow 7n^2 - 132n - 667 = 0$$

$$\Rightarrow n = 23, \frac{-29}{7}$$

$$23\times\alpha=\frac{-667}{7}$$

$$\Rightarrow n = 23$$

Question: Find the area enclosed by x-axis & $y=3-|x+1|-|x-\frac{1}{2}|$.

(a)
$$\frac{27}{8}$$

(b)
$$\frac{23}{8}$$

(c)
$$\frac{25}{8}$$

(d)
$$\frac{27}{4}$$

Solution:

$$\begin{cases} 3+x+1+x-\frac{1}{2} & ; & x<-1 \\ 3-x-1+x-\frac{1}{2} & ; & -1 \le x < \frac{1}{2} \\ 3-x-1-x+\frac{1}{2} & ; & x \ge \frac{1}{2} \end{cases}$$

$$\begin{cases} 2x + \frac{7}{2} & ; & x < -1 \\ \frac{3}{2} & ; & -1 \le x < \frac{1}{2} \\ -2x + \frac{5}{2} & ; & x \ge \frac{1}{2} \end{cases}$$

Required area $(ABCD) = \frac{1}{2} \times \left(3 + \frac{3}{2}\right) \frac{3}{2}$

$$=\frac{27}{8}$$

Question:
$$f(x) + f(x+k) = n$$
, $I_1 = \int_{0}^{4nk} f(x) dx$, $I_2 = \int_{-k}^{3k} f(x+k) dx$

(a)
$$I_1 = 2I_2$$

(b)
$$I_1 = nI_2$$

Solution:

$$f(x)+f(x+k)=n$$
$$x \to x+k$$

$$x \to x + k$$

$$f(x+k) = f(x+2k) = n$$

$$\Rightarrow f(x) = f(x+2k)$$

Period = 2k

$$I_{1} = \int_{0}^{4nk} f(x) dx = 2n \int_{0}^{2k} f(x) dx$$

$$I_{1} = \int_{0}^{4nk} f(x) dx = 2n \int_{0}^{2k} f(x) dx$$
$$I_{2} = \int_{-k}^{3k} f(x+k) dx = \int_{0}^{4k} f(t) dt$$

$$=2\int_{0}^{2k}f(x)dx$$

$$I_1 = nI_2$$

Question: There are 30 candidates to be distributed among 4 children C_1, C_2, C_3, C_4 such that C_2 gets at least 4 and at most 7 candy and C_3 gets at least 2 and almost 6 candy. The number of ways to distribute it.

Answer:
$${}^{27}C_3 - {}^{23}C_3 - {}^{22}C_3 + {}^{18}C_3$$

$$x_1 + x_2 + x_3 + x_4 = 30$$

$$4 \le x_2 \le 7$$

$$t_2 = x_2 - 4$$

$$2 \le x_3 \le 6$$

$$t_3 = x_3 - 2$$

$$\Rightarrow x_1 + t_2 + t_3 + x_4 = 24$$

$$^{24+4-1}C_{4-1} = ^{27}C_3$$

$$x_1 + x_2 + x_3 + x_4 = 30$$

$$8 \le 2, \ 2 \le x_3$$

$$x_1 + t_2 + t_3 + x_4 = 20$$

$${}^{20+4-1}C_{4-1} = {}^{23}C_3$$

$$x_1 + x_2 + x_3 + x_4 = 30$$

$$4 \le x_2, \ 7 \le x_3$$

$$x_1 + t_2 + t_3 + x_4 = 19$$

$$^{19+4-1}C_{4-1} = ^{22}C_3$$

$$x_1 + x_2 + x_3 + x_4 = 30$$

$$8 \le x_2, 7 \le x_3$$

$$x_1 + t_1 + t_2 + x_4 = 15$$

$$^{15+4-1}C_{4-1} = ^{18}C_3$$

Required answer = ${}^{27}C_3 - {}^{23}C_3 - {}^{22}C_3 + {}^{18}C_3$

Question: f(x) is a quadratic polynomial. If f(-2)+f(3)=0 and one root of equation is -1. Find the sum of roots.

Answer:
$$\frac{11}{3}$$

Solution:

$$f(x) = ax^2 + bx + c$$

$$f(-1) = 0 \Rightarrow a - b + c$$
(1)

$$f(-2)+f(3)=0$$

$$\Rightarrow (4a-2b+c)+(9a+3b+c)=0$$

$$13a+b+2c=0$$
(2)

Eq.
$$(2) - 2$$
 (Eq. 1)

$$\Rightarrow 11a + 3b = 0$$

$$\Rightarrow b = \frac{-11a}{3}$$

Sum of roots
$$=\frac{-b}{a} = \frac{11}{3}$$

Question:
$$\lim_{n\to\infty} 6 \tan \left(\sum_{r=1}^n \tan^{-1} \left(\frac{1}{r^2 + 3r + 3} \right) \right)$$

Answer: 3.00

Given,
$$\lim_{n\to\infty} 6 \tan \left(\sum_{r=1}^n \tan^{-1} \left(\frac{1}{r^2 + 3r + 3} \right) \right)$$

$$\lim_{n\to\infty} 6 \tan \left[\sum_{r=1}^n \tan^{-1} \left[\frac{(r+2)-(r+1)}{1+(r+2)(r+1)} \right] \right)$$

$$= \lim_{n \to \infty} 6 \tan \left(\sum_{r=1}^{n} \tan^{-1} (r+2) - \tan^{-1} (r+1) \right)$$

$$= \lim_{n \to \infty} 6 \tan \left[\tan^{-1} (n+2) - \tan^{-1} (2) \right]$$

$$= \lim_{n \to \infty} 6 \tan \left[\tan^{-1} \left(\frac{n}{1+2(n+2)} \right) \right]$$

$$= \lim_{n \to \infty} \frac{6n}{2n+5} = 3$$

Question: If
$$\lim_{x \to 1} \left(\frac{\sin(3x^2 - 4x + 1) - 4x + 1}{2x^3 - 7x^2 + ax + b} \right) = -2$$
 then $a - b = ?$

Answer: 11.00

Solution:

$$\lim_{x \to 1} \left[\frac{\sin(3x^2 - 4x + 1) - x^2 + 1}{2x^3 - 7x^2 + ax + b} \right] = -2$$

$$\Rightarrow a + b = 5$$

$$\cos(3x^2 - 4x + 1)(6x - 4) - 2x$$

$$\lim_{x \to 1} \frac{\cos(3x^2 - 4x + 1)(6x - 4) - 2x}{6x^2 - 14x + a} = -2$$

$$\Rightarrow a = 8, b = -3$$

$$\therefore a-b=11$$

Question: For a parabola directrix: 3x-4y=21, vertex (2, -1). Find length of Latus Rectum.

Answer: $\frac{32}{5}$

Solution:

Directrix: 3x-4y=21; vertex (2,-1)

$$a = \left| \frac{3(2) - 4(-1) - 21}{5} \right| = \left| \frac{6 + 4 - 21}{5} \right| = \left| \frac{11}{5} \right|$$

$$\therefore LLR = 4a = \frac{44}{5}$$

Question: $\cot \alpha = 1$; $\alpha \in \left(\pi, \frac{3\pi}{2}\right)$, $\sec \beta = \frac{-5}{3}$, $\beta \in \left(\frac{\pi}{2}, \pi\right)$. Find $\tan(\alpha + \beta)$.

Answer: $\frac{-1}{7}$

Solution:

$$\tan(\alpha+\beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta} = \frac{1 - \frac{4}{3}}{1 + \frac{4}{3}} = \frac{-1}{7}$$

Question: $A = \{a, b, c, d\}, B = \{1, 2, 3, 4, 5\}, f : A \rightarrow B$ is one-one. Find the probability that f(a) + 2f(b) - f(c) = f(d).

Answer: $\frac{1}{20}$

Solution:

$$f(b) = \frac{f(c) + f(d) - f(a)}{2}$$

а	b	C	d	ľ
1	3	2	5	
5	1	3	4	
4	2	3	5	
5	1	4	3	
1	3	5	2	
4	2	5	3	

Favourable cases = 6

Total cases = $5 \times 4 \times 3 \times 2$

$$\therefore$$
 Required probability $=\frac{6}{5!} = \frac{1}{20}$

Question: Find the coefficient of term independent of x in $(1-x^2+3x^3)(\frac{5}{2}x^3-\frac{1}{5x^2})^{11}$.

Answer: $\frac{33}{200}$

Solution:

General term of $\left(\frac{5}{2}x^3 - \frac{1}{5x^2}\right)^{11}$ is:

$$T_{r+1} = {}^{11}C_r \left(\frac{5}{2}x^3\right)^{11-r} \left(-\frac{1}{5x^2}\right)^r$$
$$= {}^{11}C_r \left(-1\right)^r \cdot \frac{5^{11-2r}}{22^{11-r}} \cdot x^{33-5r}$$

Coefficient of term independent of $x = \text{Coefficient of } x^0 \text{ in } \left(\frac{5}{2}x^3 - \frac{1}{5x^2}\right)^{11}$

-Coefficient of
$$x^{-2}$$
 in $\left(\frac{5}{2}x^3 - \frac{1}{5x^2}\right)^{11} + 3 \times \text{Coefficient of } x^{-3}$ in $\left(\frac{5}{2}x^3 - \frac{1}{5x^2}\right)^{11}$
= $0 - {}^{11}C_7\left(-1\right)^7 \cdot \frac{5^{-3}}{2^4} + 0 = \frac{330}{5^3 \cdot 2^4} = \frac{33}{200}$

Question: If vertex of parabola is (2, -1) and equation of its directrix is 4x - 3y = 21, then the length of latus rectum is

Answer: 8.00

Solution:

Length if Latus rectum = 4 (perpendicular distance of (2, -1) from 4x-3y-21=0)

$$=4\frac{|8+3-21|}{5}=8$$

Question: Find the equation of plane passing through the points (2,-1,0) and perpendicular to planes 2x-3y+z=0 and 2x-y-3z=0.

Answer: 6.00

Solution:

Let DRs be a,b,c

Now
$$2a-3b+c=0$$

$$2a-b-3c=0$$

$$\frac{a}{5} = \frac{b}{4} = \frac{c}{2}$$

Equation of required plane is

$$5(x-2)+4(y+1)+2(z-0)=0$$

 $\Rightarrow 5x+4y+2z=6$

Question: In an infinite GP,
$$a = n^2$$
, $r = \frac{1}{(n+1)^2}$, $\frac{1}{26} + \sum_{n=0}^{50} \left(S_n - \frac{2}{n+1} - n - 1 \right) = ?$, where S_n is

sum of given GP. Answer: 41652.00

$$a = n^{2}, r = \frac{1}{(n+1)^{2}}; s_{n} = \frac{a}{1-r} = \frac{n(n+1)^{2}}{(n+2)}$$

$$\Rightarrow \frac{1}{26} + \sum_{n=0}^{50} \left[\frac{n(n+1)^{2}}{(n+2)} + \left(\frac{2}{n+1}\right) - (n+1) \right]$$

$$\Rightarrow \frac{1}{26} + \sum_{n=0}^{50} \left[\left(n^{2} - n - 1\right) + \left(\frac{n}{n+2}\right) + \left(\frac{2}{n+1}\right) \right]$$

$$\Rightarrow \frac{1}{26} + \sum_{n=0}^{50} \left[n^2 - n - 2 \left(\frac{1}{n+2} - \frac{1}{n+1} \right) \right]$$

$$\Rightarrow \frac{1}{26} + \left[\frac{50 \cdot 51 \cdot 101}{6} - \frac{50 \cdot 51}{2} - 2 \sum_{n=0}^{50} \left(\frac{1}{n+2} - \frac{1}{n+1} \right) \right]$$

$$\Rightarrow \frac{1}{26} + \left[41650 - 2 \left(\frac{1}{52} - 1 \right) \right] = 41652$$